blonde poker forum
Welcome, Guest. Please login or register.
July 19, 2025, 07:53:59 AM

Login with username, password and session length
Search:     Advanced search
2262307 Posts in 66604 Topics by 16990 Members
Latest Member: Enut
* Home Help Arcade Search Calendar Guidelines Login Register
+  blonde poker forum
|-+  Poker Forums
| |-+  The Rail
| | |-+  Red-Dog's Last Theorem
0 Members and 1 Guest are viewing this topic. « previous next »
Pages: 1 2 3 [4] 5 Go Down Print
Author Topic: Red-Dog's Last Theorem  (Read 11871 times)
thetank
Hero Member
*****
Offline Offline

Posts: 19278



View Profile
« Reply #45 on: May 02, 2009, 07:19:28 PM »

There will be k riffles with stacks of n chips



That's about as far as I got before lack of education inhibited my progress.

Love the picture, but you need to use Z+. Your set allows a negative number of riffles Wink

I was just gonna use Z, but go on to specify that k must fall into the range

1<k<(2n)!

(With < denoting less than or equal to but cba going to paint again to use the proper symbol Smiley )
Logged

For super fun to exist, well defined parameters must exist for the super fun to exist within.
Grier78
www.AllInOnADraw.com
Hero Member
*****
Offline Offline

Posts: 1136


www.AllInOnADraw.com


View Profile WWW
« Reply #46 on: May 02, 2009, 07:45:46 PM »


ChipsRiffles
2 2
3 3
4 3
5 5
6 6
7 4
8 4
9 9
10 6



I'd like to question this data.

I simulated the effect of a regimented riffling system on two stacks of chips under laboratory conditions and oserved the following

2 chips = 2 riffles
3 chips = 4 riffles
4 chips = 3 riffles
5 chips = 6 riffles
6 chips = 10 riffles
7 chips = 12 riffles
8 chips = 4 riffles

I can corroborate your data
Logged

UpTheMariners
Hero Member
*****
Offline Offline

Posts: 1888


We Only Sing When We're Fishing


View Profile
« Reply #47 on: May 02, 2009, 08:48:39 PM »

the answer is 3.5 bags of sugar
Logged

ACE2M
Hero Member
*****
Offline Offline

Posts: 7832



View Profile
« Reply #48 on: May 02, 2009, 10:47:00 PM »

this battered my brain a few years a go, way beyond us.
Logged
Jon MW
Hero Member
*****
Offline Offline

Posts: 6202



View Profile
« Reply #49 on: May 02, 2009, 11:04:18 PM »

There will be k riffles with stacks of n chips



That's about as far as I got before lack of education inhibited my progress.

Love the picture, but you need to use Z+. Your set allows a negative number of riffles Wink

I was just gonna use Z, but go on to specify that k must fall into the range

1<k<(2n)!

(With < denoting less than or equal to but cba going to paint again to use the proper symbol Smiley )

ffs I was trying to keep out of it, wtf is Z+ ?

Do you mean ?


Logged

Jon "the British cowboy" Woodfield

2011 blonde MTT League August Champion
2011 UK Team Championships: Black Belt Poker Team Captain  - - runners up - -
5 Star HORSE Classic - 2007 Razz Champion
2007 WSOP Razz - 13/341
thetank
Hero Member
*****
Offline Offline

Posts: 19278



View Profile
« Reply #50 on: May 03, 2009, 01:16:44 AM »

Oooh, is that for Natural numbers.

Wil use that then

for kay is less than or equal to (two times enn) factorial  Tongue
Logged

For super fun to exist, well defined parameters must exist for the super fun to exist within.
StuartHopkin
Hero Member
*****
Offline Offline

Posts: 8145


Ocho cinco


View Profile
« Reply #51 on: May 03, 2009, 06:17:36 AM »


ChipsRiffles
2 2
3 3
4 3
5 5
6 6
7 4
8 4
9 9
10 6



I'd like to question this data.

I simulated the effect of a regimented riffling system on two stacks of chips under laboratory conditions and oserved the following

2 chips = 2 riffles
3 chips = 4 riffles
4 chips = 3 riffles
5 chips = 6 riffles
6 chips = 10 riffles
7 chips = 12 riffles
8 chips = 4 riffles

I can corroborate your data

3 chips  = 3 riffles

Logged

Only 23 days to go until the Berlin Marathon! Please sponsor me at www.virginmoneygiving.com/StuartHopkin
thetank
Hero Member
*****
Offline Offline

Posts: 19278



View Profile
« Reply #52 on: May 03, 2009, 07:54:00 AM »


3 chips  = 3 riffles



after 0...

b   y
b   y
b   y

after 1...

b   y   
y   b
b   y

after 2...

y   y
y   b
b   b

after 3... (not quite there yet)

y   y
b   y
b   b

after 4... (now we're home)

b   y
b   y
b   y

« Last Edit: May 03, 2009, 07:56:53 AM by thetank » Logged

For super fun to exist, well defined parameters must exist for the super fun to exist within.
thetank
Hero Member
*****
Offline Offline

Posts: 19278



View Profile
« Reply #53 on: May 03, 2009, 08:01:40 AM »

Only way to do it in 3 is if you break from the regimented system and suddenly change the direction on the 3rd riffle.

We won't be able to come up with a formula if people are changing the direction of the riffle at arbitary times.
Logged

For super fun to exist, well defined parameters must exist for the super fun to exist within.
kinboshi
ROMANES EUNT DOMUS
Administrator
Hero Member
*****
Offline Offline

Posts: 44239


We go again.


View Profile WWW
« Reply #54 on: May 03, 2009, 09:56:37 AM »

I still get 3 riffles for stacks of 3 chips.

The top three chips always going off to the left and being the first chip at the bottom:

£  $
£  $
£  $

First riffle gives:

$  £
£  $
$  £

2nd:

£  £
$  £
$  $

3rd:

£  $
£  $
£  $



Logged

'The meme for blind faith secures its own perpetuation by the simple unconscious expedient of discouraging rational inquiry.'
Cf
Global Moderator
Hero Member
*****
Offline Offline

Posts: 8081



View Profile
« Reply #55 on: May 03, 2009, 10:04:45 AM »

There will be k riffles with stacks of n chips



That's about as far as I got before lack of education inhibited my progress.

Love the picture, but you need to use Z+. Your set allows a negative number of riffles Wink

I was just gonna use Z, but go on to specify that k must fall into the range

1<k<(2n)!

(With < denoting less than or equal to but cba going to paint again to use the proper symbol Smiley )

ffs I was trying to keep out of it, wtf is Z+ ?

Do you mean ?


Z+ is the set of positive integers, {1,2,3...}

N is the set of natural numbers, {1,2,3...} or {0,1,2,3...}. Using Z+ saves this ambiguity. I believe 0 is commonly said to be a natural number these days.

So if you want to allow 0 riffles in your calculations use N, if not use Z+.
Logged

Blue text
Rupert
:)
Hero Member
*****
Offline Offline

Posts: 2119



View Profile WWW
« Reply #56 on: May 03, 2009, 10:31:52 AM »

Hmm pretty sure someone from poker society at Warwick did a paper on this.  Will see if I can get in touch with them.

At Walsall GUKPT this year, Red Dog was boring engaging the people at his table with this problem: http://www.funtrivia.com/askft/Question23938.html That site also has the solution FWIW, so thought Red Dog might be interested.  The problem is you have 12 chips and one of the chips is of a different weight to the others (either heavier or lighter).  On a set of balancing scales, determine in 3 weighs which chip it is and whether it is heavier or lighter.
Logged

RichEO
Hero Member
*****
Offline Offline

Posts: 1493



View Profile
« Reply #57 on: May 03, 2009, 10:33:43 AM »

If I have 3 chips and cut them to the left every time it takes 4 riffles. If I cut them to the right everytime it takes 3 riffles. It is to do with having the same colour chip on the bottom (for the 2nd riffle) as you started with or a different colour one.
Logged
sharky_uk
Sr. Member
****
Offline Offline

Posts: 654



View Profile
« Reply #58 on: May 03, 2009, 12:05:54 PM »

I only have a 2000 piece chipset so had to stop at n=1000

2   2
3   3
4   3
5   5
6   6
7   4
8   4
9   9
10   6
11   11
12   10
13   9
14   14
15   5
16   5
17   12
18   18
19   12
20   10
21   7
22   12
23   23
24   21
25   8
26   26
27   20
28   9
29   29
30   30
31   6
32   6
33   33
34   22
35   35
36   9
37   20
38   30
39   39
40   27
41   41
42   8
43   28
44   11
45   12
46   10
47   36
48   24
49   15
50   50
51   51
52   12
53   53
54   18
55   36
56   14
57   44
58   12
59   24
60   55
61   20
62   50
63   7
64   7
65   65
66   18
67   36
68   34
69   69
70   46
71   60
72   14
73   42
74   74
75   15
76   24
77   20
78   26
79   52
80   33
81   81
82   20
83   83
84   78
85   9
86   86
87   60
88   29
89   89
90   90
91   60
92   18
93   40
94   18
95   95
96   48
97   12
98   98
99   99
100   33
101   84
102   10
103   66
104   45
105   105
106   70
107   28
108   15
109   18
110   24
111   37
112   60
113   113
114   38
115   30
116   29
117   92
118   78
119   119
120   12
121   81
122   84
123   36
124   41
125   25
126   110
127   8
128   8
129   36
130   84
131   131
132   26
133   22
134   134
135   135
136   12
137   20
138   46
139   30
140   35
141   47
142   36
143   60
144   68
145   48
146   146
147   116
148   45
149   132
150   42
151   100
152   30
153   51
154   102
155   155
156   78
157   12
158   158
159   140
160   53
161   72
162   30
163   36
164   69
165   15
166   36
167   132
168   21
169   28
170   10
171   147
172   44
173   173
174   174
175   36
176   44
177   140
178   24
179   179
180   171
181   55
182   36
183   183
184   60
185   156
186   186
187   100
188   42
189   189
190   14
191   191
192   60
193   21
194   194
195   88
196   65
197   156
198   22
199   18
200   100
201   60
202   108
203   180
204   102
205   68
206   174
207   164
208   69
209   209
210   210
211   138
212   40
213   60
214   60
215   43
216   36
217   28
218   198
219   73
220   42
221   221
222   44
223   148
224   112
225   20
226   30
227   12
228   38
229   72
230   230
231   231
232   20
233   233
234   66
235   52
236   35
237   180
238   156
239   239
240   18
241   66
242   48
243   243
244   81
245   245
246   56
247   60
248   105
249   83
250   166
251   251
252   50
253   156
254   254
255   9
256   9
257   204
258   230
259   172
260   130
261   261
262   60
263   40
264   253
265   87
266   30
267   212
268   89
269   210
270   270
271   180
272   18
273   273
274   60
275   252
276   39
277   36
278   278
279   84
280   40
281   281
282   14
283   54
284   142
285   57
286   190
287   220
288   72
289   96
290   246
291   260
292   12
293   293
294   90
295   196
296   74
297   24
298   198
299   299
300   25
301   33
302   220
303   303
304   84
305   276
306   306
307   20
308   77
309   309
310   198
311   33
312   250
313   45
314   72
315   45
316   105
317   28
318   84
319   210
320   32
321   107
322   28
323   323
324   145
325   30
326   326
327   260
328   18
329   329
330   330
331   24
332   36
333   308
334   74
335   60
336   24
337   180
338   338
339   48
340   113
341   11
342   34
343   76
344   78
345   115
346   30
347   276
348   40
349   58
350   350
351   36
352   92
353   300
354   354
355   78
356   55
357   60
358   238
359   359
360   51
361   24
362   70
363   121
364   243
365   56
366   122
367   84
368   165
369   123
370   36
371   371
372   74
373   123
374   318
375   375
376   25
377   60
378   378
379   110
380   190
381   36
382   24
383   348
384   192
385   16
386   386
387   20
388   36
389   180
390   70
391   252
392   26
393   393
394   262
395   84
396   30
397   52
398   398
399   184
400   66
401   90
402   132
403   268
404   202
405   135
406   270
407   324
408   63
409   12
410   410
411   411
412   20
413   413
414   414
415   92
416   168
417   332
418   90
419   419
420   406
421   35
422   78
423   330
424   47
425   396
426   426
427   36
428   214
429   429
430   60
431   431
432   86
433   136
434   390
435   132
436   48
437   300
438   438
439   292
440   55
441   441
442   116
443   443
444   21
445   135
446   414
447   356
448   132
449   140
450   104
451   42
452   90
453   453
454   300
455   91
456   205
457   60
458   390
459   153
460   51
461   420
462   90
463   102
464   232
465   126
466   310
467   40
468   117
469   156
470   470
471   220
472   36
473   473
474   36
475   316
476   34
477   380
478   140
479   204
480   155
481   159
482   96
483   483
484   72
485   97
486   138
487   60
488   244
489   110
490   36
491   491
492   98
493   138
494   154
495   495
496   15
497   396
498   166
499   36
500   60
501   232
502   132
503   468
504   252
505   42
506   46
507   84
508   84
509   509
510   170
511   10
512   10
513   156
514   294
515   515
516   129
517   132
518   120
519   519
520   173
521   444
522   180
523   348
524   131
525   175
526   108
527   420
528   15
529   88
530   530
531   531
532   140
533   240
534   178
535   24
536   126
537   140
538   358
539   492
540   253
541   171
542   60
543   543
544   165
545   545
546   182
547   36
548   137
549   156
550   366
551   29
552   24
553   180
554   554
555   100
556   156
557   148
558   558
559   372
560   261
561   561
562   300
563   231
564   282
565   84
566   510
567   452
568   189
569   264
570   162
571   42
572   38
573   180
574   382
575   575
576   144
577   60
578   132
579   180
580   63
581   83
582   116
583   388
584   249
585   585
586   88
587   460
588   265
589   195
590   118
591   156
592   156
593   593
594   70
595   44
596   149
597   476
598   18
599   180
600   150
601   200
602   24
603   280
604   60
605   516
606   606
607   324
608   76
609   572
610   180
611   611
612   420
613   204
614   614
615   615
616   204
617   36
618   618
619   174
620   72
621   140
622   164
623   28
624   78
625   69
626   534
627   100
628   209
629   629
630   48
631   420
632   220
633   180
634   414
635   20
636   99
637   40
638   638
639   639
640   60
641   641
642   16
643   60
644   161
645   645
646   86
647   36
648   324
649   72
650   650
651   651
652   84
653   653
654   120
655   198
656   150
657   524
658   146
659   659
660   30
661   126
662   130
663   221
664   221
665   605
666   70
667   44
668   285
669   204
670   444
671   312
672   134
673   224
674   630
675   96
676   20
677   540
678   638
679   30
680   340
681   644
682   12
683   683
684   666
685   76
686   686
687   100
688   216
689   588
690   690
691   460
692   46
693   18
694   462
695   636
696   99
697   60
698   70
699   233
700   233
701   660
702   140
703   66
704   352
705   328
706   156
707   188
708   18
709   35
710   84
711   237
712   180
713   713
714   42
715   468
716   179
717   60
718   478
719   719
720   65
721   36
722   136
723   723
724   66
725   725
726   726
727   48
728   115
729   243
730   486
731   90
732   146
733   81
734   42
735   245
736   245
737   580
738   210
739   56
740   185
741   741
742   180
743   743
744   372
745   210
746   746
747   132
748   83
749   749
750   234
751   498
752   84
753   340
754   502
755   755
756   88
757   100
758   90
759   105
760   156
761   761
762   30
763   508
764   345
765   765
766   18
767   204
768   182
769   27
770   66
771   771
772   204
773   24
774   774
775   230
776   97
777   620
778   516
779   779
780   111
781   260
782   78
783   783
784   261
785   785
786   660
787   60
788   369
789   263
790   40
791   791
792   158
793   506
794   678
795   252
796   261
797   140
798   266
799   60
800   200
801   228
802   212
803   803
804   201
805   267
806   26
807   72
808   210
809   809
810   810
811   540
812   150
813   271
814   180
815   87
816   385
817   36
818   818
819   740
820   273
821   260
822   276
823   180
824   48
825   84
826   252
827   60
828   46
829   78
830   30
831   831
832   36
833   833
834   834
835   556
836   357
837   660
838   84
839   99
840   410
841   120
842   84
843   24
844   281
845   198
846   846
847   28
848   424
849   283
850   162
851   780
852   20
853   284
854   122
855   812
856   57
857   588
858   200
859   570
860   215
861   287
862   220
863   260
864   36
865   144
866   866
867   692
868   96
869   828
870   870
871   246
872   174
873   873
874   260
875   408
876   73
877   36
878   150
879   879
880   293
881   140
882   88
883   90
884   210
885   330
886   588
887   140
888   37
889   148
890   102
891   891
892   24
893   893
894   298
895   198
896   405
897   716
898   598
899   48
900   25
901   50
902   684
903   276
904   99
905   181
906   252
907   220
908   429
909   424
910   606
911   911
912   180
913   84
914   290
915   305
916   276
917   732
918   830
919   612
920   393
921   144
922   60
923   923
924   301
925   77
926   72
927   156
928   309
929   780
930   930
931   594
932   186
933   933
934   66
935   935
936   468
937   500
938   938
939   939
940   45
941   804
942   42
943   72
944   236
945   60
946   90
947   756
948   135
949   105
950   950
951   860
952   28
953   953
954   902
955   84
956   239
957   764
958   630
959   900
960   56
961   64
962   60
963   460
964   107
965   965
966   322
967   84
968   222
969   276
970   646
971   924
972   194
973   145
974   974
975   975
976   30
977   88
978   306
979   652
980   234
981   60
982   260
983   210
984   445
985   18
986   986
987   780
988   329
989   989
990   282
991   660
992   22
993   993
994   24
995   180
996   498
997   36
998   998
999   333
1000   308
Logged
david3103
Hero Member
*****
Offline Offline

Posts: 6089



View Profile
« Reply #59 on: May 03, 2009, 12:29:21 PM »

Some interesting stuff here...  http://echochamber.me/viewtopic.php?f=17&t=33796
Logged

It's more about the winning than the winnings

5 November 2012 - Kinboshi says "Best post ever on blonde thumbs up"
Pages: 1 2 3 [4] 5 Go Up Print 
« previous next »
Jump to:  

Powered by MySQL Powered by PHP Powered by SMF 1.1.21 | SMF © 2015, Simple Machines Valid XHTML 1.0! Valid CSS!
Page created in 0.455 seconds with 20 queries.