blonde poker forum
Welcome, Guest. Please login or register.
August 13, 2025, 11:30:57 PM

Login with username, password and session length
Search:     Advanced search
2262872 Posts in 66616 Topics by 16993 Members
Latest Member: jobinkhosla
* Home Help Arcade Search Calendar Guidelines Login Register
+  blonde poker forum
|-+  Poker Forums
| |-+  The Rail
| | |-+  Moving on to a Maths Puzzle
0 Members and 1 Guest are viewing this topic. « previous next »
Pages: 1 [2] 3 Go Down Print
Author Topic: Moving on to a Maths Puzzle  (Read 3639 times)
ACE2M
Hero Member
*****
Offline Offline

Posts: 7832



View Profile
« Reply #15 on: January 09, 2007, 02:55:42 PM »

7.8%.
Logged
thetank
Hero Member
*****
Offline Offline

Posts: 19278



View Profile
« Reply #16 on: January 09, 2007, 02:55:53 PM »

I googled for hints.....


Consider the generating function
f(x) = (1 + x)4(1 + x2)4...(1 + x13)4 = a0 + a1x + a2x2 ... + a364x364.

Each exponent in the generating function represents a total score, and the corresponding coefficient represents the number of ways of obtaining that score.


Well that's just giving it away ffs.
Logged

For super fun to exist, well defined parameters must exist for the super fun to exist within.
TightEnd
Administrator
Hero Member
*****
Offline Offline

Posts: I am a geek!!



View Profile
« Reply #17 on: January 09, 2007, 02:56:35 PM »

you are close enough


the workings, long form, are reproduced below for all those who have been pestering me about it. Especially Poppet.


There are 2 to the power 52 equally likely configurations of face up/face down.  We seek the number of configurations for which the sum of face up card values is divisible by 13.

Consider the generating function
f(x) = (1 + x)4(1 + x2)4...(1 + x13)4 = a0 + a1x + a2x2 ... + a364x364.(1)

There is a bijection between each card configuration and a contribution to the corresponding term in the generating function.  Each exponent in the generating function represents a total score; the corresponding coefficient represents the number of ways of obtaining that score.

Hence we seek the sum S = a0 + a13 + ... + a364.

Express S in terms of f(1), f(w), ... , f(w12)
Let w be a (complex) primitive 13th root of unity.  Then w13 = 1 and 1 + w + w2 + ... + w12 = 0.  Consider

f(1)  = a0 +  a1 +  a2 + ... +  a13 +  a14 + ... +  a363 +  a364
f(w)  = a0 +  a1w +  a2w2 + ... +  a13 +  a14w + ... +  a363w12 +  a364
f(w2)  = a0 +  a1w2 +  a2w4 + ... +  a13 +  a14w2 + ... +  a363w11 +  a364
f(w3)  = a0 +  a1w3 +  a2w6 + ... +  a13 +  a14w3 + ... +  a363w10 +  a364
 ...
f(w12)  = a0 +  a1w12 +  a2w11 + ... +  a13 +  a14w12 + ... +  a363w +  a364

Since w is a primitive root of unity, the set of values {wk, (wk)2, ... , (wk)12} is a permutation of {w, w2, ... , w12}, for any integer k not divisible by 13.
Therefore, adding these 13 equations, we obtain
f(1) + f(w) + ... + f(w12) = 13(a0 + a13 + ... + a364).
Hence S = [f(1) + f(w) + ... + f(w12)]/13.

Evaluate f(1), f(w), ... , f(w12)
Clearly, from (1), f(1) = 252.
Also, f(w) = [(1 + w)(1 + w2)...(1 + w13)]4.(2)

Consider g(x) = x13 − 1 = (x − w)(x − w2)...(x − w13).
Then g(−1) = −2 = (−1 − w)(−1 − w2)...(−1 − w13).
Hence (1 + w)(1 + w2)...(1 + w13) = 2.

Again, since w is a primitive root of unity, the terms of f(w2), ... , f(w12), will simply be a permutation of those for f(w), in (2).
Hence f(w) = f(w2) = ... = f(w12) = 2.

Conclusion

Putting the above results together, we obtain S = (252 + 12·24)/13.

Therefore, the probability that the total value is divisible by 13 is S/252 =

 
0.0769
 

Remarks

The full expansion of the generating function is given below.  So, for example, the mode is total value = 182, which can occur in 62256518307724 different ways.

f(x) = 1 + 4x + 10x2 + 24x3 + 51x4 + 100x5 + 190x6 + 344x7 + 601x8 + 1024x9 + 1702x10 + 2768x11 + 4422x12 + 6948x13 + 10748x14 + 16404x15 + 24722x16 + 36816x17 + 54242x18 + 79112x19 + 114285x20 + 163644x21 + 232364x22 + 327324x23 + 457652x24 + 635320x25 + 875970x26 + 1199972x27 + 1633653x28 + 2210864x29 + 2975012x30 + 3981404x31 + 5300170x32 + 7019992x33 + 9252384x34 + 12136984x35 + 15848122x36 + 20602388x37 + 26667864x38 + 34375320x39 + 44131176x40 + 56433032x41 + 71888218x42 + 91235276x43 + 115369242x44 + 145371580x45 + 182544588x46 + 228451436x47 + 284963083x48 + 354311768x49 + 439152692x50 + 542635472x51 + 668485014x52 + 821093960x53 + 1005628534x54 + 1228147584x55 + 1495737359x56 + 1816664180x57 + 2200545074x58 + 2658538920x59 + 3203561115x60 + 3850521524x61 + 4616588568x62 + 5521483156x63 + 6587801685x64 + 7841371392x65 + 9311642126x66 + 11032113124x67 + 13040798405x68 + 15380734776x69 + 18100530454x70 + 21254957700x71 + 24905593127x72 + 29121503120x73 + 33979976422x74 + 39567307824x75 + 45979628488x76 + 53323783760x77 + 61718262076x78 + 71294167920x79 + 82196238282x80 + 94583905196x81 + 108632394234x82 + 124533856716x83 + 142498536263x84 + 162755956512x85 + 185556125278x86 + 211170753288x87 + 239894471656x88 + 272046039176x89 + 307969536456x90 + 348035526772x91 + 392642171257x92 + 442216294116x93 + 497214373326x94 + 558123441452x95 + 625461891139x96 + 699780156504x97 + 781661253340x98 + 871721171276x99 + 970609086769x100 + 1079007378496x101 + 1197631437798x102 + 1327229243384x103 + 1468580679735x104 + 1622496595508x105 + 1789817571030x106 + 1971412375504x107 + 2168176115226x108 + 2381028044032x109 + 2610909019874x110 + 2858778616460x111 + 3125611864711x112 + 3412395614952x113 + 3720124536976x114 + 4049796740152x115 + 4402409013015x116 + 4778951709128x117 + 5180403273004x118 + 5607724412712x119 + 6061851960721x120 + 6543692427032x121 + 7054115261412x122 + 7593945881104x123 + 8163958479348x124 + 8764868641560x125 + 9397325841272x126 + 10061905840124x127 + 10759103030662x128 + 11489322805332x129 + 12252873985920x130 + 13049961360604x131 + 13880678420106x132 + 14745000336692x133 + 15642777234404x134 + 16573727850160x135 + 17537433631546x136 + 18533333318564x137 + 19560718110862x138 + 20618727464160x139 + 21706345555304x140 + 22822398515948x141 + 23965552467364x142 + 25134312386636x143 + 26327021892068x144 + 27541863967292x145 + 28776862637474x146 + 30029885667328x147 + 31298648284803x148 + 32580717918316x149 + 33873519998414x150 + 35174344804916x151 + 36480355320421x152 + 37788596117900x153 + 39096003239480x154 + 40399414996720x155 + 41695583699166x156 + 42981188239084x157 + 44252847439018x158 + 45507134142632x159 + 46740589955049x160 + 47949740515536x161 + 49131111260522x162 + 50281243567912x163 + 51396711143755x164 + 52474136595712x165 + 53510208073162x166 + 54501695821760x167 + 55445468589999x168 + 56338509765548x169 + 57177933082296x170 + 57960997841452x171 + 58685123525124x172 + 59347903653156x173 + 59947118833482x174 + 60480748900460x175 + 60946984006739x176 + 61344234635400x177 + 61671140451814x178 + 61926577881548x179 + 62109666406075x180 + 62219773526440x181 + 62256518307724x182 + 62219773526440x183 + 62109666406075x184 + 61926577881548x185 + 61671140451814x186 + 61344234635400x187 + 60946984006739x188 + 60480748900460x189 + 59947118833482x190 + 59347903653156x191 + 58685123525124x192 + 57960997841452x193 + 57177933082296x194 + 56338509765548x195 + 55445468589999x196 + 54501695821760x197 + 53510208073162x198 + 52474136595712x199 + 51396711143755x200 + 50281243567912x201 + 49131111260522x202 + 47949740515536x203 + 46740589955049x204 + 45507134142632x205 + 44252847439018x206 + 42981188239084x207 + 41695583699166x208 + 40399414996720x209 + 39096003239480x210 + 37788596117900x211 + 36480355320421x212 + 35174344804916x213 + 33873519998414x214 + 32580717918316x215 + 31298648284803x216 + 30029885667328x217 + 28776862637474x218 + 27541863967292x219 + 26327021892068x220 + 25134312386636x221 + 23965552467364x222 + 22822398515948x223 + 21706345555304x224 + 20618727464160x225 + 19560718110862x226 + 18533333318564x227 + 17537433631546x228 + 16573727850160x229 + 15642777234404x230 + 14745000336692x231 + 13880678420106x232 + 13049961360604x233 + 12252873985920x234 + 11489322805332x235 + 10759103030662x236 + 10061905840124x237 + 9397325841272x238 + 8764868641560x239 + 8163958479348x240 + 7593945881104x241 + 7054115261412x242 + 6543692427032x243 + 6061851960721x244 + 5607724412712x245 + 5180403273004x246 + 4778951709128x247 + 4402409013015x248 + 4049796740152x249 + 3720124536976x250 + 3412395614952x251 + 3125611864711x252 + 2858778616460x253 + 2610909019874x254 + 2381028044032x255 + 2168176115226x256 + 1971412375504x257 + 1789817571030x258 + 1622496595508x259 + 1468580679735x260 + 1327229243384x261 + 1197631437798x262 + 1079007378496x263 + 970609086769x264 + 871721171276x265 + 781661253340x266 + 699780156504x267 + 625461891139x268 + 558123441452x269 + 497214373326x270 + 442216294116x271 + 392642171257x272 + 348035526772x273 + 307969536456x274 + 272046039176x275 + 239894471656x276 + 211170753288x277 + 185556125278x278 + 162755956512x279 + 142498536263x280 + 124533856716x281 + 108632394234x282 + 94583905196x283 + 82196238282x284 + 71294167920x285 + 61718262076x286 + 53323783760x287 + 45979628488x288 + 39567307824x289 + 33979976422x290 + 29121503120x291 + 24905593127x292 + 21254957700x293 + 18100530454x294 + 15380734776x295 + 13040798405x296 + 11032113124x297 + 9311642126x298 + 7841371392x299 + 6587801685x300 + 5521483156x301 + 4616588568x302 + 3850521524x303 + 3203561115x304 + 2658538920x305 + 2200545074x306 + 1816664180x307 + 1495737359x308 + 1228147584x309 + 1005628534x310 + 821093960x311 + 668485014x312 + 542635472x313 + 439152692x314 + 354311768x315 + 284963083x316 + 228451436x317 + 182544588x318 + 145371580x319 + 115369242x320 + 91235276x321 + 71888218x322 + 56433032x323 + 44131176x324 + 34375320x325 + 26667864x326 + 20602388x327 + 15848122x328 + 12136984x329 + 9252384x330 + 7019992x331 + 5300170x332 + 3981404x333 + 2975012x334 + 2210864x335 + 1633653x336 + 1199972x337 + 875970x338 + 635320x339 + 457652x340 + 327324x341 + 232364x342 + 163644x343 + 114285x344 + 79112x345 + 54242x346 + 36816x347 + 24722x348 + 16404x349 + 10748x350 + 6948x351 + 4422x352 + 2768x353 + 1702x354 + 1024x355 + 601x356 + 344x357 + 190x358 + 100x359 + 51x360 + 24x361 + 10x362 + 4x363 + x364.


and to think, I spent years on this stuff and now I have to resort to copy and pasting from google. Shakes head.

Logged

My eyes are open wide
By the way,I made it through the day
I watch the world outside
By the way, I'm leaving out today
Royal Flush
Hero Member
*****
Offline Offline

Posts: 22690


Booooccccceeeeeee


View Profile
« Reply #18 on: January 09, 2007, 03:00:11 PM »

And to think boldie can do it in under 6 minutes!
Logged

[19:44:40] Oracle: WE'RE ALL GOING ON A SPANISH HOLIDAY! TRIGGS STABLES SHIT!
Graham C
Hero Member
*****
Offline Offline

Posts: 20663


Moo


View Profile
« Reply #19 on: January 09, 2007, 03:00:22 PM »

I was almost there, just on my last few +3203561115x304's!
Logged

Moskvich
Hero Member
*****
Offline Offline

Posts: 1002


View Profile
« Reply #20 on: January 09, 2007, 03:03:01 PM »

Quote
Therefore, the probability that the total value is divisible by 13 is S/252 =


0.0769

I did 1/13 = 0.0769.

Please can I have a maths degree?

from Moskvich (aged 8 and a half)
Logged
Rod Paradise
Hero Member
*****
Offline Offline

Posts: 7650


View Profile
« Reply #21 on: January 09, 2007, 03:03:57 PM »

Bugger - was going to say 1/4096.... but that's only the chance of perfect pairings (same no of Q's as A's, J's as 2's etc.

Didn't take into account 1xQ, 2xA's, 3x6's, 1x7 etc.

Head hurts now....
Logged

May the bird of paradise fly up your nose, with a badger on its back.
thetank
Hero Member
*****
Offline Offline

Posts: 19278



View Profile
« Reply #22 on: January 09, 2007, 03:04:45 PM »

Moskovich was indeed, exactly right.

Sod all the explanation, 1 divided by 13, ship it to the lad.
Logged

For super fun to exist, well defined parameters must exist for the super fun to exist within.
TightEnd
Administrator
Hero Member
*****
Offline Offline

Posts: I am a geek!!



View Profile
« Reply #23 on: January 09, 2007, 03:05:53 PM »

Moskvich can have his degree but only if it is from a former (sniff, turns nose up) polytechnic...


you know, a pretend one...
Logged

My eyes are open wide
By the way,I made it through the day
I watch the world outside
By the way, I'm leaving out today
Wardonkey
No ordinary donkey!
Hero Member
*****
Offline Offline

Posts: 3645



View Profile
« Reply #24 on: January 09, 2007, 03:07:25 PM »

Doe the formula hold if you take out the kings?

With no kings your looking for a multiple of 12.

Probability = 1/12?

Logged

EEEEEEEEEE-AAAAAAAAWWWWW
AndrewT
Global Moderator
Hero Member
*****
Offline Offline

Posts: 15483



View Profile WWW
« Reply #25 on: January 09, 2007, 03:09:14 PM »

Quote
Therefore, the probability that the total value is divisible by 13 is S/252 =


0.0769

I did 1/13 = 0.0769.

Please can I have a maths degree?

from Moskvich (aged 8 and a half)

Er, yeah.

Correct my thinking if I'm wrong, but the maximum score is 364. Any value from 0 to 364 is equally likely. As 364 itself is a multiple of 13, the chances of any randomly selected number in the range being divisible by 13 is 1/13.
Logged
TightEnd
Administrator
Hero Member
*****
Offline Offline

Posts: I am a geek!!



View Profile
« Reply #26 on: January 09, 2007, 03:10:21 PM »

Doe the formula hold if you take out the kings?

With no kings your looking for a multiple of 12.

Probability = 1/12?




don't ask me, i'm just a good copy and paster
Logged

My eyes are open wide
By the way,I made it through the day
I watch the world outside
By the way, I'm leaving out today
Wardonkey
No ordinary donkey!
Hero Member
*****
Offline Offline

Posts: 3645



View Profile
« Reply #27 on: January 09, 2007, 03:11:59 PM »

Quote
Therefore, the probability that the total value is divisible by 13 is S/252 =


0.0769

I did 1/13 = 0.0769.

Please can I have a maths degree?

from Moskvich (aged 8 and a half)

Er, yeah.

Correct my thinking if I'm wrong, but the maximum score is 364. Any value from 0 to 364 is equally likely. As 364 itself is a multiple of 13, the chances of any randomly selected number in the range being divisible by 13 is 1/13.

I don't think they're equally likely, there is only one way to make zero and a loads and loads, to use a techincal term, to make 182.
Logged

EEEEEEEEEE-AAAAAAAAWWWWW
ACE2M
Hero Member
*****
Offline Offline

Posts: 7832



View Profile
« Reply #28 on: January 09, 2007, 03:13:25 PM »

Quote
Therefore, the probability that the total value is divisible by 13 is S/252 =


0.0769

I did 1/13 = 0.0769.

Please can I have a maths degree?

from Moskvich (aged 8 and a half)

Er, yeah.

Correct my thinking if I'm wrong, but the maximum score is 364. Any value from 0 to 364 is equally likely. As 364 itself is a multiple of 13, the chances of any randomly selected number in the range being divisible by 13 is 1/13.



I don't think they're equally likely, there is only one way to make zero and a loads and loads, to use a techincal term, to make 182.

i made the same mistake intially.
Logged
Wardonkey
No ordinary donkey!
Hero Member
*****
Offline Offline

Posts: 3645



View Profile
« Reply #29 on: January 09, 2007, 03:15:20 PM »

Doe the formula hold if you take out the kings?

With no kings your looking for a multiple of 12.

Probability = 1/12?




don't ask me, i'm just a good copy and paster

I think it does I treid to solve the original problem by using a simpler dice scenario and then extrapolating, I had the 0.0769 or 1/13 thing at one point, but I'm technically challenged and didn't really know how I'd got there or if it was correct (I had some other numbers as well).
Logged

EEEEEEEEEE-AAAAAAAAWWWWW
Pages: 1 [2] 3 Go Up Print 
« previous next »
Jump to:  

Powered by MySQL Powered by PHP Powered by SMF 1.1.21 | SMF © 2015, Simple Machines Valid XHTML 1.0! Valid CSS!
Page created in 0.117 seconds with 20 queries.